Monatshefte für Chemie 106, 1437-1447 (1975) © by Springer-Verlag 1975

Dampf—Flüssigkeits-Gleichgewichte und Stoffwerte des Systems 1,1-Dichloräthan/Chloroform/1,2-Dichloräthan

Von

F. Gölles, O. Wolfbauer und F. Still

Aus dem Institut für Grundlagen der Verfahrenstechnik der Technischen Universität und aus dem Institut für Pharmakognosie der Universität in Graz, Österreich

Mit 3 Abbildungen

(Eingegangen am 10. Juni 1975)

Vapor-liquid Equilibria and Physical Properties of the System 1,1-Dichloroethane(1)/Trichloromethane(2)/1,2-Dichloroethane(3)

Isobaric data of the three binary and the ternary system were measured at the pressures 550, 400, and 250 Torr. The systems exhibit almost ideal behaviour.

In addition to this, measurements of the values of density, viscosity and surface tension were performed.

Einleitung

Das untersuchte Dreistoffgemisch tritt in der Praxis bei der Erzeugung von 1,2-Dichloräthan auf, da hier 1,1-Dichloräthan und CHCl₃ als Nebenprodukte anfallen.

Über das ternäre System liegen keine Literaturangaben vor; die drei binären Systeme wurden von Kaplan und Monachowa¹ bzw. Kirejew und Monachowa² bei Atmosphärendruck untersucht und beschrieben. Obwohl auf Grund dieser Messungen ein nahezu ideales Verhalten der untersuchten Systeme zu erwarten war, stellten sich die Verfasser die Aufgabe, die Phasengleichgewichte bei verschiedenen Drucken — 550, 400 und 250 Torr — sowohl für das ternäre als auch für die drei binären Systeme zu untersuchen. Neben den Phasengleichgewichten sollten auch die Dichte, die Zähigkeit und die Oberflächenspannung der Systeme untersucht werden, da in der Literatur zwar die Daten für die Einzelstoffe³, nicht aber für die Gemische zu finden waren.

Experimenteller Teil

Die Bestimmung der Phasengleichgewichte wurde mit Hilfe einer Umlaufapparatur nach $Stage^4$ vorgenommen. Die Gleichgewichtstemperaturen wurden unter Verwendung eines Thermistors (Toleranz \pm 0,5 °C)

ermittelt, die Drucke mit einem Vakuumkonstanthalter auf 0,2 Torr genau eingestellt.

Zur Analyse verwendet wurde ein Hewlett-Packard-Chromatograph mit Flammen-Ionisations-Detektor. Zur Trennung geeignet erwies sich eine Carbowax-20-M-Säule (Länge 2 m, Durchmesser 1/8", Füllung 10% Carbowax auf Chromosorb W).

x	Y	Т	X	Y	т	X	Y	т	
	0.9510	200.06	0.9530	0.9696	312.96	0 7690	0.8997	301 36	
0,5000	0.9437	323.26	0,9550	0,9090	312,30	0,1050	0,8336	301,30	
0,0000	0.9248	324 16	0,0000	0.9509	313 56	0,5470	0 7545	305.96	
0,0500	0.8892	324,10	0,8550	0,0000	314 46	0,5380	0,7010	307.96	
0 7200	0.8732	326.06	0,3970	0.9114	315.86	0.5300	0,7391	308 36	
0.6200	0.8129	327.26	0 7600	0.8947	316.36	0.5250	0 7348	308.66	
0.5650	0.7733	328.16	0.7280	0.8788	317.01	0.4540	0.6707	311.36	
0.4800	0.7028	329.45	0.6850	0.8556	317.71	0.3940	0.6104	312.66	
0.4650	0.6887	330.46	0.6470	0.8330	318.46	0.3810	0.5962	313.26	
0.4300	0.6545	332.06	0.6060	0.8061	319.56	0.3380	0.5472	315.56	
0.4100	0.6339	333.16	0.5750	0.7842	320.46	0.2990	0.5000	315.96	
0.3800	0.6017	334.46	0.5200	0.7417	321.86	0.2720	0,4636	318.46	
0.3150	0.5263	335.91	0.4550	0.6856	322.36	0.2310	0,4071	319.36	
0.2650	0.4613	338.46	0.4300	0,6616	323,16	0,2040	0,3671	320,56	
0.3000	0.5072	337,16	0.4050	0,6365	324,06	0,1930	0,3501	321,26	
0,2300	0,4125	339,56	0,3430	0,5686	326, 16	0,1580	0,2946	322,36	
0,2000	0,3680	340,96	0,3200	0,5413	326,86	0,1490	0,2799	322,56	
0,1500	0,2887	341,66	0,2700	0,4780	327,71	0,0870	0,1722	322,96	
0,1300	0,2548	342,26	0,1700	0,3306	330,96				
0,1350	0,2632	342,76	0,2100	0,3930	330,01				
0,0900	0,1830	343,56	0,0650	0,1405	334,36				
0,0700	0,1450	344, 16	0,0450	0,0994	335,46				
0,0500	0,1056	344,56	0,1150	0,2362	332,86				
			0,0800	0,1703	333,46				
p = 550 Torr			p = 400 Torr			$p=250~{ m Torr}$			
Mittl. a	bsol, Feł	ler: 0,019		0,010		-	0,032		
Mittl. rel. Fehler: 0,026			0,018			0,009			

Tabelle 1. System 1,1-Dichloräthan/1,2-Dichloräthan, ausgeglichene Wertenach Wilson

Die Säulentemp. betrug 90 °C, die Detektor- und Injektortemp. je 150 °C. Bei einer Trägergasmenge von 60 ml/min N_2 wurden nachstehende Retentionszeiten erhalten: 1,1-Dichloräthan 70 sec, CHCl₃ 124—128 sec und 1,2-Dichloräthan 169—171 sec.

Die Bestimmung der Dichten der Gemische wurde durch Wägung der thermostatierten Mischungen in 20 ml-Pyknometern vorgenommen. Die Zähigkeiten wurden mittels eines Ubbelohde-Viskosimeters, die Oberflächenspannung mit einem Fischer-Tensiomat bestimmt.

Ergebnisse

a) Dampf-Flüssigkeits-Gleichgewichte

Die untersuchten Systeme zeigten nahezu ideales Siedeverhalten. Die aufgenommenen Siedediagramme (Tab. 1, 2, 3) entsprechen weitgehend den in der Lit.^{1, 2} für die drei binären Systeme bei Atmosphärendruck angegebenen Kurven. Unter Verwendung von Dampfdruckdaten

Tabelle 2. System 1,1-Dichloräthan/CHCl₃, ausgeglichene Werte nach Wilson

X	Y	Т	Х	Y	Т	X	Y	Т		
0,2050	0,2151	324,21	0,1800	0,1921	315,50	0,9700	0,9573	300,46		
0,9750	0,9773	321,11	0,9700	0,9722	312,46	0,0330	0,0343	303,81		
0,9330	0,9388	321, 51	0,1300	0,1394	315, 51	0,9330	0,9241	301,01		
0,8950	0,9035	321,66	0,0400	0,0432	315,51	0,8800	0,8843	301,66		
0,7400	0,7565	321,86	0,9300	0,8934	312,86	0,7400	0,7740	302,06		
0,5900	0,6093	323, 16	0,9000	0,9067	313,36	0,5830	0,6271	302,46		
0,4400	0,4581	323,56	0,8100	0,8215	314, 16	0,4550	0,4935	302,86		
0,3800	0,3966	324,06	0,5750	0,5939	314,51	0,3600	0,3899	302,96		
0,2600	0,2724	324, 16	0,4500	0,4695	314,66	0,2600	0,2795	303,26		
0,2150	0,2255	324,06	0,3700	0,3886	315,06	0,2250	0,2409	303,26		
0,1800	0,1889	324, 36	0,2600	0,2756	315, 16	0,2150	0,2300	303,56		
0,1250	0,1313	324, 41	0,2200	0,2340	315, 21	0,1800	0,1917	303,61		
0,0400	0,0420	324,46	0,2100	0,2235	315,46	0,1250	0,1320	303,71		
$p=550~{ m Torr}$			p = 400 Torr			$p=250~{ m Torr}$				
Mittl. a	bsol. Feb	ler: 0,015	0,009			0,005				
Mittl. rel. Fehler: 0,019			0,017				0,015			

der Reinstoffsysteme nach dem VDI-Wärmeatlas³, die nach der Gleichung von Van Laar⁵ ausgeglichen wurden⁶, wurden die drei binären Systeme nach der *Wilson*gleichung⁷ korreliert.

Die verwendeten Dampfdruckdaten sowie die erhaltenen Wilson-Parameter bringt Tab. 4.

Das ternäre System wurde ebenso vermessen, die Ergebnisse zeigt Tab. 5. Aus den gemessenen unabhängigen Variabeln — Druck und Molenbrüche der flüssigen Phase — wurden unter Verwendung eines Programmes aus⁸ mit Hilfe der in Tab. 4 angegebenen *Wilson*-Parameter der binären Systeme die abhängigen Variabeln Temperatur (T)und Zusammensetzung der Dampfphase errechnet.

Die gleiche Berechnung wurde auch unter Annahme der Idealität $(\gamma = 1)$ der flüssigen Phase durchgeführt. Da diese Form der Berechnung eine praktisch gleich gute Annäherung an die experimentellen Worte lieferte, wurden nur diese Ergebnisse in die Tab. 5 aufgenommen.

x	Y	Т	X	Y	Т	x	Y	Т	
0,1600	0,2887	332,36	0,1330	0,2394	342,51	0,9700	0,9867	304,86	
0,9730	0,9875	316, 21	0,9830	0,9921	325,06	0,8800	0,9432	305,56	
0,9300	0,9666	316,86	0,9570	0,9795	325,51	0,8500	0,9273	306,66	
0,8270	0,9123	318,66	0,8670	0,9331	327, 16	0,8000	0,8995	307,31	
0,7800	0,8850	319,86	0,8530	0,9254	327,66	0,7400	0,8636	307,91	
0,7400	0,8608	320,06	0,8200	0,9068	328,01	0,6850	0,8291	308,56	
0,7070	0,8397	320,66	0,7800	0,8831	328,56	0,6400	0,7965	309,86	
0,6770	0,8197	321,16	0,7370	0,8563	329,41	0,6350	0,7932	309,31	
0,6500	0,8010	321,76	0,6730	0,8136	330,26	0,5850	0,7557	310,46	
0,6240	0,7824	322,16	0,6320	0,7842	331, 21	0,5400	0,7197	311,46	
0,5940	0,7600	322,76	0,5770	0,7422	332,06	0,4640	0,6542	312,36	
0,5770	0,7468	323,26	0,5500	0,7205	332,36	0,4070	0,6003	313,16	
0,5140	0,6956	324,16	0,5000	0,6775	333,66	0,3830	0,5763	314,46	
0,4740	0,6604	325,06	0,4800	0,6596	333,91	0,3800	0,5734	314,26	
0,4430	0,6316	325,66	0,4640	0,6447	334,36	0,2900	0,4744	316,56	
0.4100	0,5996	326,16	0.3600	0,5397	336,51	0,2770	0,4585	317,56	
0,3700	0,5583	326,96	0,3350	0,5116	337,36	0,2000	0,3599	318,81	
0,3330	0,5176	327,76	0,2840	0,4515	338,10	0,1370	0,2673	320,16	
0,3100	0,4909	328,46	0,2500	0,4078	339,81	0,1240	0,2467	320,11	
0,3470	0,5330	327,86	0,2900	0,4589	338,01	0,1070	0,2182	320,95	
0,2870	0,4634	328,81	0,1750	0,3039	341,26	0,0970	0,2010	321,06	
0,2500	0,4167	329.56	0,1330	0,2396	342,16	0,0800	0,1703	321,71	
0,5600	0,7333	323,71	0,2500	0,4081	339,46	0,0670	0,1459	322,11	
$p = 550 \mathrm{Torr}$			$p=400~{ m Torr}$			$p=250~{ m Torr}$			
Mittl. a	bsol. Fek	ler: 0,011	0,006			~	0,005		
Mittl. rel. Fehler: 0.014			0,011			0,014			

Tabelle 3. System CHCl₃/1,2-Dichloräthan, ausgeglichene Werte nach Wilson

Tabelle 4. Wilson-Konstanten der binären Systeme (1)/(2), (1)/(3) und (2)/(3), sowie Konstanten der verwendeten Dampfdruckgleichung

System	p	550 Torr	400 Torr	250 Torr
(1)/(2)	Δ19	97.12	20.85	
(*)(-)	A21	-97.47	-16.40	1501.11
(1)/(3)	Λ_{12}	-692,11	-652,87	192,47
· // · /	Λ_{21}	2056,06	1830,23	206,80
(1)/(3)	Λ_{12}^{-2}	52,28	10,94	621,39
· // · /	Λ_{21}	-47,58	1,35	
Komponente	C1	C ₂	C ₃	C ₄
1.1-Dichloräthan	-862.82845	19674,8458		152,61523
CHCl ₃	321,20673	-12857,3980	0,076633	-53,050769
1,2-Dichloräthan	76,77806	-6538,6773	0,008498	

Stoff	T_{ex}	T_{id}	T_W	x	Yex	Yid	ex
p = 250 Torr							
(1) (2) (3)	306,3	304,9	304,4	$0,522 \\ 0,304 \\ 0,174$	$0,611 \\ 0,304 \\ 0,085$	$0,604 \\ 0,318 \\ 0,078$	1,075 0,996 1,132
(1) (2) (3)	303,9	305,5	306,5	$0,702 \\ 0,018 \\ 0,280$	$0,841 \\ 0,016 \\ 0,143$	$0,850 \\ 0,019 \\ 0,131$	$1,099 \\ 0,936 \\ 1,175$
(1) (2) (3)	304,4	304,5	304,9	$0,507 \\ 0,319 \\ 0,174$	$0,590 \\ 0,324 \\ 0,086$	$0,588 \\ 0,335 \\ 0,077$	$1,049 \\ 0,993 \\ 1,113$
(1) (2) (3)	304,8	304,7	305,5	$0,129 \\ 0,753 \\ 0,118$	1,052 0,794 0,054	$0,151 \\ 0,796 \\ 0,054$	1,046 1,016 1,005
(1) (2) (3)	304,4	304,6	305,4	$0,368 \\ 0,473 \\ 0,159$	$0,435 \\ 0,488 \\ 0,077$	$0,429 \\ 0,499 \\ 0,072$	$1,064 \\ 1,009 \\ 1,082$
(1) (2) (3)	304,8	304,7	305,4	$0,389 \\ 0,443 \\ 0,168$	$0,452 \\ 0,459 \\ 0,089$	$0,455 \\ 0,469 \\ 0,076$	$1,030 \\ 0,997 \\ 1,175$
(1) (2) (3)	307,1	306,7	307,3	$0,408 \\ 0,296 \\ 0,296$	$0,520 \\ 0,322 \\ 0,158$	$0,517 \\ 0,338 \\ 0,145$	$1,034 \\ 0,961 \\ 1,076$
(1) (2) (3)	308,7	308,0	309,9	$0,356 \\ 0,274 \\ 0,370$	$0,486 \\ 0,313 \\ 0,195$	$0,476 \\ 0,331 \\ 0,193$	$1,036 \\ 0,942 \\ 0,988$
(1) (2) (3)	311,2	311,1	311,6	$0,069 \\ 0,453 \\ 0,478$	0,102 0,607 0,291	$0,104 \\ 0,613 \\ 0.283$	1,023 1,010 1,031
(1) (2) (3)	316,2	316,8	317,5	0,129 0,109 0,762	$0,258 \\ 0,176 \\ 0,566$	$0,243 \\ 0,183 \\ 0,573$	$1,142 \\ 1,012 \\ 1,029$
$p=400~{ m Torr}$							
(1) (2) (3)	312,9	313,8	314,8	$0,799 \\ 0,130 \\ 0,071$	$0,851 \\ 0,118 \\ 0,031$	$0,846 \\ 0,125 \\ 0,030$	$1,091 \\ 1,001 \\ 1,098$
(1) (2) (3)	315,8	316,1	317,1	$0,636 \\ 0,171 \\ 0,193$	$0,732 \\ 0,172 \\ 0,096$	$0,732 \\ 0,178 \\ 0,089$	$1,059 \\ 0,997 \\ 1,109$

Tabelle 5. Phasengleichgewichte des Systems 1,1-Dichloräthan (1)/Chloro-
form (2)/1,2-Dichloräthan (3)

Stoff	T_{ex}	T_{id}	T_W	x	Yex	Yid	ex
(1) (2) (3)	316,5	315,3	317,7	$0,485 \\ 0,338 \\ 0,177$	$0,566 \\ 0,345 \\ 0,089$	$0,563 \\ 0,355 \\ 0,082$	$1,044 \\ 1,054 \\ 1,042$
(1) (2) (3)	316,5	316,1	318,1	$0,388 \\ 0,448 \\ 0,164$	$0,451 \\ 0,463 \\ 0,086$	$0,447 \\ 0,467 \\ 0,086$	$1,041 \\ 1,003 \\ 1,136$
(1) (2) (3)	316,5	316,0	316,9	$0,089 \\ 0,828 \\ 0,083$	0,101 0,860 0,039	$0,102 \\ 0,860 \\ 0,038$	1,014 1,007 1,017
(1) (2) (3)	316,8	317,1	138,1	$0,579 \\ 0,175 \\ 0,246$	$0,695 \\ 0,179 \\ 0,126$	0,693 0,189 0,118	$1,064 \\ 0,982 \\ 1,041$
(1) (2) (3)	316,2	317,6	319,1	$0,298 \\ 0,476 \\ 0,226$	$0,366 \\ 0,512 \\ 0,122$	$0,364 \\ 0,525 \\ 0,111$	1,037 0,995 1,094
(1) (2) (3)	320,9	321,2	322,8	0,279 0,296	$0,399 \\ 0,365$	0,389 0,371	1,094 1,011
(1) (2) (3)	316,0	316,7	316,6	$0,526 \\ 0,302 \\ 0,117$	$0,609 \\ 0,306 \\ 0,085$	$0,621 \\ 0,322 \\ 0,056$	1,056 1,000 1,609
(1) (2) (3)	316,1	316,2	317,6	$0,506 \\ 0,319 \\ 0,175$	0,589 0,323 0,083	$0,585 \\ 0,334 \\ 0,081$	$1,058 \\ 0,996 \\ 1,045$
$p=550~{ m Torr}$							
(1) (2) (3)	322,0	322,2	323,5	$0,797 \\ 0,131 \\ 0,072$	$0,846 \\ 0,120 \\ 0,034$	$0,843 \\ 0,126 \\ 0,031$	1,066 0,991 1,097
(1) (2) (3)	325,1	324,3	325, 6	0,091 0,829 0,080	$0,101 \\ 0,859 \\ 0,040$	0,104 0,857 0,039	0,994 1,009 1,012
(1) (2) (3)	325,1	324,1	326,9	$0,370 \\ 0,473 \\ 0,157$	$0,420 \\ 0,500 \\ 0,080$	$0,429 \\ 0,497 \\ 0,074$	1,023 1,029 1,072
(1) (2) (3)	325,4	325,3	325,2	$0,728 \\ 0,015 \\ 0,257$	$0,847 \\ 0,016 \\ 0,137$	$0,859 \\ 0,016 \\ 0,124$	1,041 1,017 1,118
(1) (2) (3)	325,5	325,1	327,2	$0,369 \\ 0,457 \\ 0,174$	$0,434 \\ 0,474 \\ 0,092$	$0,432 \\ 0,484 \\ 0,084$	1,047 0,995 1,093

Tabelle 5 (Fortsetzung)

Stoff	T _{ex}	T _{id}	T_W	x	Yex	Yid	ex
(1)	325,5	325,6	327,3	0,575	0,685	0,688	1,095
(2)				0,176	0,181	0,189	0,992
(3)				0,249	0,134	0,123	1,114
(1)	328,8	328,6	331,1	0,351	0,466	0,465	1,054
(2)				0,277	0,324	0,331	1,006
(3)				0,372	0,210	0,204	1,040
(1)	330,5	330,0	332,5	0.273	0,386	0.378	1,069
(2)				0,298	0,364	0,373	0,996
(3)				0,429	0,250	0,249	1,009
(1)	333,3	332,0	333,6	0.069	0,099	0,102	1.064
(2)				0,445	0,593	0,595	0,993
(3)				0,486	0,308	0,303	0,997
(1)	338,6	338,3	339.8	0.129	0.246	0.234	1.121
(2)	ŕ	<i>,</i>	,	0,103	0,162	0,169	0,993
(3)				0,768	0,592	0.597	1.007

Tabelle 5 (Fortsetzung)

Aus diesem Sachverhalt und aus den Werten der experimentell bestimmten Aktivitätskeoffizienten kann auf die Idealität des Systems geschlossen werden. Die Berechnung des mittleren Fehlers erfolgte nach der *Gauss*schen Formel.

b) Dichte

Die pyknometrisch bestimmten Dichten der binären Systeme sind aus der Abb. 1 ersichtlich. Die Geraden stellen die nach der allgemeinen Mischungsregel volumanteilig nach

$$V_G = x_1 V_1 + x_2 V_2 \tag{1}$$

errechneten Volumina des Gemisches dar. Die Abweichungen vom Idealzustand betrugen bei den Systemen

(1)/(2)	$0,0022 \text{ cm}^3/\text{mol}$
(1)/(3)	$0,0048 \text{ cm}^3/\text{mol}$
(2)/(3)	$0,0084 \text{ cm}^3/\text{mol}.$

Sie können praktisch vernachlässigt werden.

Für das ternäre System finden sich die Daten in Tab. 4. Die mittlere Abweichung betrug hier $0.0037 \text{ cm}^3/\text{mol}$.

Monatshefte für Chemie, Bd. 106/6

Abb. 1. Dichte bei 20 °C. Gerade Linien: Molanteilmittelung

Abb. 2. Viskosität bei 20 °C. x = exper. Werte

Abb. 3. Oberflächenspannung bei 20 °C. x = exper. Werte

Tabelle 6. Stoffwerte des Gemisches 1,1-Dichloräthan (1)/CHCl3 (2)/1,2-
Dichloräthan (3)

Nr.	x_1	x_2	x_3	ρ ₂₀ (exp)	$\rho_{20}(ber)$	η_{exp}	ηber	ηber	σ_{exp}	σ _{ber}
1	0,427	0,161	0,412	1,2582	1,2602	0,7080	0,7104	0,7095	30.9	31.8
2	0,134	0,602	0,264	1,3656	1,3713	0,6924	0.7028	0.6999	29.0	27.9
3	0,104	0,135	0,761	1,2748	1,2766	0,8015	0,8123	0,8088	31.0	30.87
4	0,732	0,113	0,155	1,2219	1,2279	0,6091	0.6126	0.6108	27.6	27.31
5	0,313	0,208	0,479	1,2773	1,2788	0,7090	0.7145	0.7195	30.5	29.34
6	0,269	0,279	0,452	1,2948	1,2982	0,7068	0,7136	0.7190	29.4	29,00
7	0,660	0,245	0,095	1,2553	1,2632	0,6041	0,6093	0,6073	29.1	28,50
8	0,130	0,348	0,522	1,3192	1,3235	0,7498	0,7546	0,7508	30,4	28,70

Die Werte der Zähigkeit wurden einerseits nach Arrhenius (Spalte 8) und andererseits nach Kendall und Monroe (Spalte 9) berechnet. Die Oberflächenspannung wurde nach Hammick und Andrew berechnet (Spalte 10).

c) Zähigkeit

Die kinematische Zähigkeit wurde für alle Systeme bestimmt und durch Multiplikation mit der Dichte auf die dynamische Zähigkeit umgerechnet. Für das binäre System zeigt Abb. 2, für das ternäre System Tab. 5 die Ergebnisse. Die Werte der Berechnung nach *Kendall* und *Monroe*⁹

$$\eta_{\rm OG} = x \,\eta_{01}^{\frac{1}{3}} + x_2 \,\eta_{02}^{\frac{1}{3}} \tag{2}$$

werden denen nach Arrhenius¹⁰

$$\eta_{\rm OG} = x_1 \log \eta_{01} + x_2 \eta_{02} \tag{3}$$

gegenübergestellt.

Es zeigten sich mittlere Fehler von 0,0069 cP (nach Kendall und Monroe) und von 0,0067 cP (nach Arrhenius).

d) Oberflächenspannung

Schließlich wurden noch die Oberflächenspannungen der untersuchten Gemische bestimmt und mit den Ergebnissen der Berechnung nach der Beziehung von *Hammick* und *Andrew*¹¹ verglichen. Diese Gleichung entspricht der Beziehung von *Sudgen*¹² für reine Stoffe.

Bei Flüssigkeitsgemischen treten an Stelle des Parachors [P] und der Molgewichte der reinen Stoffe die molanteilig gemittelten Werte des Gemisches

$$\sigma_G = \left\{ \left(\sum_{i=1}^n x_i \left[P \right]_i \right) \frac{\rho_G}{M_G} \right\}^4 \tag{4}$$

Bei Anwendung dieser Gleichung, die ja nur mehr eine Näherung darstellt¹³, da die Dampfphase als vernachlässigbar betrachtet wird, sind Fehler von etwa 3,5% zu erwarten.

Abb. 3 zeigt die Ergebnisse für die binären Systeme, Tab. 4 verzeichnet die Werte für das ternäre System. Es zeigte sich eine mittlere Abweichung von 1,14 dyn/cm, was etwa 3,6% des Meßwertes ausmacht.

Literatur

- ¹ S. J. Kaplan und Z. D. Monachowa, J. obšč. khim. Ser. A 7, **69**, 2499 (1937).
- ² W. A. Kirejew und Z. D. Monachowa, J. Fisik. khim. 71, 7 (1936).
- ³ Siehe z. B. VDI-Wärmeatlas, 2. Aufl., Verein deutscher Ingenieure. Düsseldorf.
- ⁴ E. Müller und H. Stage, Experimentelle Vermessung von Dampf—Flüssigkeits-Gleichgewichten. Berlin: Springer. 1961.
- ⁵ J.J. Van Laar, Die Zustandsgleichung, 1924.
- ⁶ O. Wolfbauer und F. Gölles, Mh. Chem. 101, 314 (1970).
- ⁷ O. Wolfbauer, Verf. Technik 4, (1), 32 (1970).
- ⁸ J. M. Prausnitz, Computer calculations for multicomponent vaporliquid equilibria. London: Prentice Hall. 1967.

1446

- ⁹ J. Kendall und K. P. Monroe, J. Amer. Chem. Soc. 39, 1787 (1917).
- ¹⁰ S. Z. Arrhenius, Z. Phys. Chem. 1, 285 (1887).
- ¹¹ D. L. Hammick und W. L. Andrew, J. chem. Soc. [London] 754 (1929).
- ¹² S. Sudgen, J. Chem. Soc. [London] 1924, 1177.
- ¹³ Autorenkollektiv, Berechnung thermodynamischer Stoffwerte von Gasen und Flüssigkeiten. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie. 1966.

Korrespondenz und Sonderdrucke:

Doz. Dr. F. Gölles Institut für Grundlagen der Verfahrenstechnik Technische Universität Graz Kopernikusgasse 24/II A-8010 Graz Österreich